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Abstract  

The relaxation strength measured in bending experiments on anelastic foils can substantially differ from the 
standard result that is applicable in the case of long rods. We analyze the relaxation strength of foil-shaped 
samples, presenting quantitative results for the two limiting situations of a long and a short foil. For cubic 
crystals, we discuss the relaxation strengths of two well-known relaxation processes: the Snoek effect and the 
Gorsky effect. We consider the influence of the foil geometry on the diffusion coefficient (or relaxation time) 
obtained in Gorsky effect measurements. Our results for the relaxation strength and the diffusion coefficient in 
Gorsky effect experiments are a generalization of previous calculations which apply to only two special crystal 
orientations. 

1. Introduction . 7 

Studies of anelasticity represent an important tech- 
nique for the investigation of structural relaxation pro- 
cesses in solids [1, 2]. A chief experimental result is 
the relaxation strength which provides insight into the 
microscopic nature of the relaxation process, caused, 
for instance, by reorientation or diffusion of lattice 
defects. The relaxation time, however, yields information 
on the dynamics of the investigated relaxation process. 

Figure 1 shows a frequent experimental situation, 
the bending of a foil or thin plate (Ix, ly > Iz). T h e  foil 
is clamped at one end in cantilever fashion, and its 
relaxation behavior is investigated either quasi-statically 
from its time-dependent bending (elastic after-effect) 
or from the frequency and the damping of its flexural 
vibrations (vibrating-reed technique). The bending or 
the vibrations are induced by a bending moment around 
the Y direction caused, for instance, by a force acting 
in the Z direction on the free end of the foil. Examples 
of such studies can be found in refs. 3-14. 

The anelastic relaxation of the sample in Fig. 1 is 
determined by how its flexural rigidity depends on its 
elastic compliances. This dependence, and its variation 
with crystal orientation of the sample, is standard 
knowledge for a long rod [1, 2]. For a foil, however, 
the flexural rigidity can depend in a different way on 
the elastic compliances. Bausch et al. [15] and Wagner 
[16] discussed the effects of the foil geometry for the 
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Fig. 1. Geometrical situation for an anelastic bending experiment 
on a foil. The bending moment on the sample acts in the Y 
direction, caused, for instance, by a force in the Z direction on 
the free end of the sample. 

Gorsky relaxation [17, 18], and their theoretical pre- 
dictions were experimentally confirmed by Tretkowski 
et al. [4]. However, the theoretical results of Bausch 
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et al. [15] and of Wagner [16] are restricted to two 
crystal orientations of the sample so that they are not 
generally applicable. 

In this paper, we derive expressions for the relaxation 
strength in a bending experiment on foils of different 
geometry, applicable to arbitrary crystal orientations. 
For the special case of cubic crystals, we discuss further 
the relaxation strength of two well-known relaxation 
processes: the Snoek effect and the Gorsky effect [1, 
2, 17]. For the Gorsky effect, we consider finally also 
the influence of the foil geometry on the measured 
relaxation time. A more detailed discussion of possible 
sample geometries and deformation models will be 
given elsewhere [19]. 

2. Determination of the relaxation strength 

In a bent foil with cartesian coordinates as shown 
in Fig. 1, the stresses tr=, tr~ and ~= can be considered 
to be zero [20]. The relation tr~y = 0 holds additionally 
since no torque is applied around the X direction. A 
decisive criterion for the bending behavior of the foil 
is the influence of the clamp. In regions of the foil 
that are close to the clamp, the clamp will not allow 
any bending around the X axis, such as is expected in 
the absence of the clamp as a consequence of lateral 
contractions and dilatations in the Y direction. We can 
distinguish two limiting cases: the case of a long foil, 
lx >> ly, and the case of a short foil, l~ << l r For a short 
foil, the clamp suppresses any significant bending around 
the X axis within the entire foil, so that we can assume 
that no strain % exists. This limiting situation was 
considered in the calculations of Bausch et al. [15] and 
Wagner [16]. In the experiments of Tretkowski et al. 
[4], which confirmed these calculations, a bending of 
the foil around the X axis was particularly effectively 
suppressed since clamps were mounted at both ends 
of the foil. For a long foil, on the contrary, we can 
neglect the regions of the foil which are influenced by 
the clamp so that we can assume that tryy=0. In the 
following, we discuss the two limiting cases above, 
pointing out at the same time that the general relaxation 
behavior will - depending on the ratio of lx to ly - 
exhibit a continuous transition between the two limiting 
cases. 

We consider first the bending of a long foil 
(Ix>> ly >>1,). The bending moment in the Y direction 
is caused, for instance, by a force acting in the Z 
direction on the free sample end. The bending moment 
and the resulting bending of the foil are proportional 
to the derivative of the stress try, and the strain E~, 
with respect to the Z coordinate. Since trr/= tr= = ~r~= 
tr~ =tr~ = 0 holds for a long foil, the bending behavior 
is completely determined by the relation 

6~=slltr,_,=E -ltr,~ (1) 

where the elastic compliance sll (in Voigt's notation 
[21]) is defined in the cartesian coordinates in Fig. 1, 
and where E - 1( = s11) is the reciprocal Young's modulus 
in the X direction. The relaxation strength Ae is de- 
termined by the relaxation 8sll =~(E-1)  of sll = E - l ,  
so that it is given by 

~$11 6(E -1) 
A e - - - - -  E_  1 (2) 

Sl l  

Equation (2) shows that the relaxation strength of the 
long foil is identical with the standard result for a long 
rod [1, 2]. 

Let us now consider the bending of a short foil 
(/x<<ly). To calculate the relaxation strength in this 
case, we need again a relationship between ~, and tr=, 
similarly as in eqn. (1). Considering (i) that the only 
non-zero stresses are tr= and trw and (ii) that the strain 

is zero, we can write 

Exx ~--- S 110"xx "1- S 12 Oryy Eyy = 0 = $210".rx "~ S220"yy (3) 

Equation (3) describes a situation between a uniaxial 
stress and a uniaxial strain. According to this equation, 
the relation between e,~, and try, reads (note that s12 =s21) 

S122~ 
~)~rx~=Es.or,- l~r~x (4) 

where the quantity Eshort -1 =Sll--S122/S22 is an effective 
reciprocal Young's modulus in the X direction, valid 
for the bending of a short foil. Equation (4) shows 
that the bending behavior of a short foil differs from 
that of a long foil (and a long rod), and that Eshor t-1 
is smaller than S11=E -1 (SEE is positive for stability 
reasons [22]). 

The relaxation strength AE.ho. observed in the case 
of the short foil is determined by the relaxations 8s11, 
8s12 and ~s22 of the compliances contributing to 
AE..o~. Accordingly, the relaxation strength AE~,o. of the 
short foil is given by 

AEshort ~ -  Eshort- l(sij + ~Sij ) --Eshort-l(sij ) 
_l(s,j) (5) 

3. Cubic crystal symmetry 

The anelastic properties of cubic crystals are com- 
pletely determined by the three compliances SA1 
(=$22=$33), Slz (=$13=$23) and S** (=Sss=Sos) and 
by their anelastic relaxations 8Sll, 8S12 and BS,~ [1, 2, 
20-22]. These compliances are defined in the coordinate 
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system of the cubic crystal axes, and they will be written 
in capital letters to discriminate them from the com- 
pliances in the cartesian coordinates in Fig. 1 (lower- 
case letters). An alternative description is possible with 
the help of the bulk modulus B = 1 / 3 ( S n  + 2S12) and 
the two shear compliances S ' = 2 ( S n - S ~ 2 )  and $44, 
again together with their respective anelastic relaxations. 
The two shear compliances are identical for elastic 
isotropy. In the following, we shall also use an anisotropy 
compliance SA = S' - S~ = 2Sn - 2S12 - $44.  

The compliances s o can be expressed by the com- 
pliances S~t with the help of the cosines am, between 
the X, Y and Z axes of the respective coordinate systems 
(the first and the second subscript m = 1, 2 or 3 and 
n = 1, 2 or 3 denote the coordinate axes X, Y or Z in 
Fig. 1 and the crystal axes X, Y or Z respectively). 
Note also the relation ak12+ak22-k-ak32=alk2-Fa2k2+ 
a3k  2--- 1 [21] which is used in some of the subsequent 
calculations. 

In tensor notation, the elastic compliances SO,d can 
be expressed by S~, S~2 and SA according to 

Sijkl = S12~ij akl AI- ~ 5 44( ~ikajl "~ all (~jk) 

+½SA~ai~,aj~,ak,at, (6) 
bt 

where 6=,, is 1 for m--n and is 0 otherwise. Equation 
(6) can be used to calculate the s~ m and &~m from &d 
and 6S,a, which in turn allOws calculation of the re- 
laxation strengths in eqns. (2) or (5). 

Polycrystalline samples are macroscopically isotropic 
so that their elastic properties are completely deter- 
mined by only two moduli, for instance the bulk modulus 
B and the shear modulus G. For such samples, s~l, s~2 
and s22 can be written as [1, 2, 20, 22] 

1 1 1 1 1 
S 1 1 = S 2 2 - E  - 9B + 3--G S12-- 9B 6G (7) 

where the bulk modulus is B =  1/3(Sn +2S~2). To es- 
tablish the dependence of G on Sn, Sa2 and &4 involves 
a complex averaging procedure between S' = 2(Sn - $12) 
and Sa4 [1, 2]. The actual value lies between the 
orientational average over the shear moduli, yielding 
G = 2/5S' + 3/5&4 (Voigt's average), and the orienta- 
tional average over the shear compliances, yielding 
G -~-2-sS' +s&4a (Reuss'average) [1, 2, 22]. For both 
limits, it is possible to determine the relaxation strength 
from the compliances S,, and their relaxations 6Skt. 

or tetrahedral interstitial atoms in b.c.c, metals [1, 2, 
17]. In the latter case, and for small defect concen- 
trations, the relaxations 6Sij of the compliances S,.j are 
given by [17] 

6S,1 = - 26S~a = 2 p ( S n -  S12)Z(A-B) 2 aS44=0 
9kaT 

(8) 
where p is the number of defects per volume, k~T is 
the thermal energy and A - B  is the difference of the 
trace components of the double-force tensor of the 
defects. 

The size of the relaxation process is completely 
determined by 6Sn, so that this quantity will be used 
for the description of this Snoek relaxation. With the 
help of 6Sn and eqns. (2), (4), (5) and (8), the relaxation 
strength of a long foil is given by 

•11 1-3/'11 AE-- - -  - (9) 
$11 511 - SA/~11 ~511 

whereas for a short foil it is 

s=2(1 - 3/'11) +SlaS22(1 - 3/'12) + s,22(1 - 3F22) ~Sll 
$22($11S22 --S122) 

(10) 

In these equations, the quantities Fn, /'12 and P22 are 
given by 

Fll  = al12a122 --b al12a132 -t- a122a132 (11) 

F12 = a~ 12a212 -3 t- a122az22 q- a132a232 (12) 

and 

/'22 = a2~2a222 + a2~2a232 + a222a232 (13) 

The relaxation strength for the long foil is identical 
with the standard result for a long rod [1, 2]. Further, 
we point out that the expression for ae~,or, follows from 
a linear expansion of Es,or, -~ with respect to &,.j (or 
SH), so that it is valid only for small 6Sn. The expression 
for AE, on the contrary, does not involve such an 
expansion so that it describes also large relaxations 
(~S11, 

5. Gorsky effect 

4. Snoek effect 

The Snoek effect is an anelastic relaxation caused 
by the reorientation of defects having a lower point 
symmetry than the crystal, for instance by octahedral 

The Gorsky effect is an anelastic relaxation resulting 
from long-range diffusion of crystal defects which expand 
or contract the lattice [1, 15-18]. For defects with an 
isotropic double-force tensor Pri~, the Gorsky relaxation 
of the elastic compliances Sn, $12 and $44 can be written 
as [17] 



542 H. Wipf et al. / Relaxation of  anelasticity experiments 

p2 
~Sn = ~$12 = 9B281z/8 p ~$44 = 0 (14) 

where 8~/8p is the derivative of the chemical potential 
of the defects with respect to the number p of defects 
per unit volume. An isotropic double-force tensor is 
well justified for hydrogen interstitials in f.c.c, and b.c.c. 
metals [18, 23], and it was also assumed in the previous 
theoretical treatments of the Gorsky relaxation [15-17]. 

According to eqns. (2), (4), (5) and (14), the relaxation 
strength of a long foil is given by 

t~Sl 1 p2 
- -  - ( 1 5 )  
s n  9 s n B  2 8glSp 

whereas in the case of a short foil it is 

(s22-s12) 2 P2/9s22B2 
AE,~o,-- (16) 

s1~s22 -- s~22 81z/~p + p2/9s22B2 

Equation (15) agrees again with the standard result 
for a long rod. We mention specifically that the expres- 
sions in both eqn. (15) and eqn. (16) do not involve 
any expansion so that they are valid for arbitrarily large 
relaxations. The two relaxation strengths differ in that 
At is inversely proportional to ~lz/Sp whereas AE~,o, 
depends on this quantity in a more complicated way. 
However, in the low concentration limit p ~  O, 81z/Sp 
assumes usually the diverging value kBT/p so that both 
relaxation strengths become inversely proportional to 
kBT. 

The relaxation strength Ae~,o, was calculated by 
Bausch et al. [15] and Wagner [16] for two special 
crystal orientations. Their result was written as 

Rto Rto 
Ae,~o.- - -  - (17) 

a - to 81z/Sp + P 2/B - to 

where the second term on the right-hand side of eqn. 
(14) is valid since a=81z /Sp+p2 /B  (see also refs. 24 
and 25). The comparison of eqns. (16) and (17) shows 
that the two quantities to and R can be given in the 
form 

p 2 (  1 ) R=(S22--S12)2 1 
to= --~ 1 9s22B $11S22--S122 9s22B- 1 

(18) 

which holds for arbitrary crystal directions. 
The relaxation time in Gorsky effect experiments 

depends on the chemical diffusion coefficient D of the 
defects. It was first pointed out by Bausch et al. [15] 
and Wagner [16] that the diffusion coefficient Dsho, 
obtained from experiments on short foils differs from 
D if Dshort is simply defined according to Fick's law. 
The fact that Dshor t differs from D results from in- 
homogeneous coherency stresses within the thin foil. 

Such coherency stresses, which arise in the neighborhood 
of the clamp, become unimportant in the case of a 
long foil, so that the dLffusion coefficient which is 
measured in experiments on long foils is identical with 
the chemical diffusion coefficient D. Bausch et al. [15] 
and Wagner [16] calculated the relation between Dshort 
and D for two special crystal orientations of the sample. 
In the following, we give an expression for Dshort that 
applies also to arbitrary crystal orientations. This expres- 
sion is presented without explicit derivation since this 
will be done in detail in a later publication [19]. 

The general relation between Dshor t and D can be 
written as 

Dshort p2 p2/B - to 
D - 1 + 9szzB2 81z/Sp - 1 + ~g/So (19) 

where to is defined according to eqn. (18). Equation 
(19) shows that D~ho, is always larger than D since s22 
is positive for stability reasons. A very important fact 
is finally, that D~hort and D become identical in the 
limit of small defect concentrations, i.e. for p ~ 0, where 
8tx/Sp assumes the diverging value kBT/p. This means 
that the influence of coherency stresses becomes neg- 
ligible in the low concentration limit. 
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